RAMAKRISHNA MISSION VIDYAMANDIRA Belur Math, Howrah - 711202 ## $\begin{array}{c} \text{M. Sc ADMISSION TEST - 2024} \\ \text{MATHEMATICS} \end{array}$ | Date: 23/07/2024 | Full Marks: 40 | Time: $12 \text{ noon} - 1:00 \text{ pm}$ | |------------------|----------------|---| | | | | ## Instructions for the candidates | | instructions to | r the candidates | | |---|---|---|------------------------------------| | • Answer all question | ons. | | | | • Each question has | 4 options out of which only | one is correct. | | | • Tick (✓) the corre | ect option on Answer Sheet. | | | | • The tick (✓) mus | t be very clear — if it is smu | dgy or not clear, no mark | s will be awarded. | | • Each correct answ | ver carries 2 marks and for | each incorrect answer 1 n | nark will be deducted. | | • Unanswered quest | ions will not be awarded. | | | | • Multiple answers | will be considered as wrong | answer. | | | • Calculator is not | allowed. | | | | 1. The area (in square $16y + 21 = 0$ and | | d by the pair of straight li | $nes 8x^2 + 10xy + 3y^2 + 26x +$ | | (a) 1
Ans. d | (b) 0.5 | (c) 0.25 | (d) 0.125. | | 2. The equation $r \sin r$ | $\theta = 2$ in spherical polar coo | rdinates represents | | | (a) a circle,(b) a right circula(c) a plane,(d) a straight lineAns. b | | | | | 3. The orthogonal tr | ajectories of the family of cir | $x^2 + y^2 + 2fy + 1 = 0$ | 0, where f is a parameter; is | | (b) $x^2 + y^2 = cx$,
(c) $x^2 + y^2 = c$, (| + 1, (where c being a parameter)
(where c being a parameter)
where c being a parameter)
c + 1, (where c being a parameter) | | | | | | th respect to the ordered | basis $\{(1,0,0,0),(0,2,0,0),$ | | (0,0,3,0), (0,0,0,
(a) (1,0,0,0),
Ans. d | (b) (0, 1, 0, 0), | (c) $(0,0,0,1)$, | (d) (1, 1, 1, 1) | | 5. Nullity of the line | ar operator represented by t | he matrix $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 6 & 1 \\ 1 & 12 & 0 \end{bmatrix}$ | is | | (a) 3
Ans. d | (b) 2 | (c) 1 | (d) 0. | | 6. How many linear (0, 1) and (1, 0, 0) | | om \mathbb{R}^3 to \mathbb{R}^2 which sends (| (1,-1,1) to $(1,0)$, $(1,1,1)$ to | (b) none (a) infinitely many Ans. d **(c)** 2 **(d)** 1. | 7. | Which of the following statements is true for the degree M of the Lagrange's interpolating polynomic for a data set containing n data points? | | | | | | |-----|---|---|--|--|--|--| | | (a) M and n are always | ys equal. | | | | | | | (b) It is possible, in se | ome cases, to have $M <$ | n. | | | | | | | | | | | | | | (d) No equality or ine | equality relation exists b | between M and n . | | | | | | Ans. b | | | | | | | 8. | . Which of the following statements is correct for the Newton Raphson method for solving equat of the form $f(x) = 0$ in an interval $[a, b]$? | | | | | | | | (a) It is a fixed point | (a) It is a fixed point method. | | | | | | | (b) Convergence is gu | twice differentiable. | | | | | | | (c) Convergence is guaranteed whenever there is a unique root in the interval $[a, b]$.
(d) Convergence is guaranteed unconditionally. | | | | | | | | Ans. a | | | | | | | 9. | A particle P possesses | s two constant velocitie | s u and v , such that u | is always parallel to a fixed | | | | | A particle P possesses two constant velocities u and v , such that u is always parallel to a fixed direction OX and v is always perpendicular to the radius vector OP . The path of the particle is a | | | | | | | | conic of eccentricity (a) $\frac{u}{v}$ | (b) $\frac{v}{u}$ | (c) $\frac{u^2}{v}$ | (d) $\frac{v^2}{2}$ | | | | | Ans. a | $(\mathcal{S})_{u}$ | | $(\mathbf{u})_{u}$ | | | | 10. | The envelope of straight is | at lines $\frac{x}{a} + \frac{y}{b} = 1$ where | e the parameters are con | nnected by the relation $ab = c$ | | | | | (a) $xy = \frac{4}{c^2}$ Ans. d | (b) $x^2 = 4cy$ | (c) $\sqrt{x} + \sqrt{y} = \sqrt{x}$ | $(\mathbf{d}) \ xy = \frac{c^2}{4}$ | | | | 11. | In which of the following | ng sets, is the curve $y =$ | $e^x(\cos x + \sin x), \ x \in (0$ | $(0,2\pi)$ concave upwards? | | | | | (a) $(0, \frac{\pi}{2}) \cup (\frac{5\pi}{4}, 2\pi)$
Ans. b | (b) $(0, \frac{\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi)$ | (c) $(0, \frac{\pi}{2}) \cup (\frac{3\pi}{4}, 2\pi)$ | (d) $(0, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, 2\pi)$ | | | | 12. | The value of the integral $\int_C \frac{dz}{z^2}$, where C is the positively oriented circle $z = 2e^{i\theta}$ $(-\pi < \theta \le \pi)$ about | | | | | | | | the origin is: | | | | | | | | (a) 1
Ans. d | (b) 2 | (c) -1 | (d) 0 | | | | 13. | | as $f(x,y) = x^2 - y^2$. Wh | nich of the following stat | tements is not true? | | | | | (a) $f(x,0)$ has a mini | mum at $(0,0)$. | | | | | | | (b) $f(0,y)$ has a maximum at $(0,0)$.
(c) $f(x,y)$ has a saddle point at $(0,0)$. | | | | | | | | | | | | | | | | (d) Hessian of f is po | sitive definite at $(0,0)$. | | | | | | | Ans. d | | | | | | | 14. | Consider the statement | ts: | | | | | | | (A): Every Riemann in | tegrable function define | ed on $[0,1]$, must have a | primitive on $[0,1]$. | | | (B): Every function having a primitive on [0,1], must be Riemann integrable on [0,1]. (a) Both of (A) and (B) are true. Which of the following statements is true? (b) (A) is true and (B) is false. | | (c) (B) is true and (A) is false.(d) Both of (A) and (B) are false. | |-----|--| | | Ans. d | | 15. | Which of the following series is conditionally convergent ? | | | (a) $\sum_{n=1}^{\infty} (-1)^n$
(b) $\sum_{n=1}^{\infty} \frac{1}{n}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ | | | Ans. c | | 16. | Let $f: \mathbb{R} \to \mathbb{R}$ satisfies $ f(x) - f(y) - x + y \le \sin(x - y ^2)$ for all $x, y \in \mathbb{R}$. Then f is | | | (a) differentiable on R with bounded derivative. (b) Lipschitz, but not necessarily differentiable with bounded derivative. (c) uniformly continuous, but not necessarily Lipscitz. (d) continuous, but not necessarily uniformly continuous. | | | Ans. a | | 17. | The function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ is not a metric on \mathbb{R}^2 , when | | | (a) $d((x_1, y_1), (x_2, y_2)) = \max\{ x_1 - x_2 , y_1 - y_2 \}.$
(b) $d((x_1, y_1), (x_2, y_2)) = \min\{ x_1 - x_2 , y_1 - y_2 \}.$
(c) $d((x_1, y_1), (x_2, y_2)) = (x_1 - x_2 ^2 + y_1 - y_2 ^2)^{1/2}.$
(d) $d((x_1, y_1), (x_2, y_2)) = x_1 - x_2 + y_1 - y_2 .$ | | | Ans. b | | 18. | Suppose G is an infinite cyclic group, then G has | | | (a) only one generator (b) exactly two generators (c) more than two but finitely many generators (d) infinitely many generators. | | | Ans. b | | 19. | Let S_3 be the symmetric group of all permutations on a set having 3 elements, then the center of S_3 has | | | (a) 1 element (b) 2 elements (c) 3 elements (d) 6 elements | | | Ans. a | | 20. | In the ring of all integers, which of the following options is correct | | | (a) there is no maximal ideal(b) there is only one maximal ideal(c) there are exactly two maximal ideals | (d) there are infinitely many maximal ideal. Ans. d