RAMAKRISHNA MISSION VIDYAMANDIRA

Belur Math, Howrah - 711202

$\begin{array}{c} \text{M. Sc ADMISSION TEST - 2024} \\ \text{MATHEMATICS} \end{array}$

Date: 23/07/2024	Full Marks: 40	Time: $12 \text{ noon} - 1:00 \text{ pm}$

Instructions for the candidates

	instructions to	r the candidates	
• Answer all question	ons.		
• Each question has	4 options out of which only	one is correct.	
• Tick (✓) the corre	ect option on Answer Sheet.		
• The tick (✓) mus	t be very clear — if it is smu	dgy or not clear, no mark	s will be awarded.
• Each correct answ	ver carries 2 marks and for	each incorrect answer 1 n	nark will be deducted.
• Unanswered quest	ions will not be awarded.		
• Multiple answers	will be considered as wrong	answer.	
• Calculator is not	allowed.		
1. The area (in square $16y + 21 = 0$ and		d by the pair of straight li	$nes 8x^2 + 10xy + 3y^2 + 26x +$
(a) 1 Ans. d	(b) 0.5	(c) 0.25	(d) 0.125.
2. The equation $r \sin r$	$\theta = 2$ in spherical polar coo	rdinates represents	
(a) a circle,(b) a right circula(c) a plane,(d) a straight lineAns. b			
3. The orthogonal tr	ajectories of the family of cir	$x^2 + y^2 + 2fy + 1 = 0$	0, where f is a parameter; is
(b) $x^2 + y^2 = cx$, (c) $x^2 + y^2 = c$, (+ 1, (where c being a parameter) (where c being a parameter) where c being a parameter) c + 1, (where c being a parameter)		
		th respect to the ordered	basis $\{(1,0,0,0),(0,2,0,0),$
(0,0,3,0), (0,0,0, (a) (1,0,0,0), Ans. d	(b) (0, 1, 0, 0),	(c) $(0,0,0,1)$,	(d) (1, 1, 1, 1)
5. Nullity of the line	ar operator represented by t	he matrix $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 6 & 1 \\ 1 & 12 & 0 \end{bmatrix}$	is
(a) 3 Ans. d	(b) 2	(c) 1	(d) 0.
6. How many linear (0, 1) and (1, 0, 0)		om \mathbb{R}^3 to \mathbb{R}^2 which sends ((1,-1,1) to $(1,0)$, $(1,1,1)$ to

(b) none

(a) infinitely many

Ans. d

(c) 2

(d) 1.

7.	Which of the following statements is true for the degree M of the Lagrange's interpolating polynomic for a data set containing n data points?					
	(a) M and n are always	ys equal.				
	(b) It is possible, in se	ome cases, to have $M <$	n.			
	(d) No equality or ine	equality relation exists b	between M and n .			
	Ans. b					
8.	. Which of the following statements is correct for the Newton Raphson method for solving equat of the form $f(x) = 0$ in an interval $[a, b]$?					
	(a) It is a fixed point	(a) It is a fixed point method.				
	(b) Convergence is gu	twice differentiable.				
	(c) Convergence is guaranteed whenever there is a unique root in the interval $[a, b]$. (d) Convergence is guaranteed unconditionally.					
	Ans. a					
9.	A particle P possesses	s two constant velocitie	s u and v , such that u	is always parallel to a fixed		
	A particle P possesses two constant velocities u and v , such that u is always parallel to a fixed direction OX and v is always perpendicular to the radius vector OP . The path of the particle is a					
	conic of eccentricity (a) $\frac{u}{v}$	(b) $\frac{v}{u}$	(c) $\frac{u^2}{v}$	(d) $\frac{v^2}{2}$		
	Ans. a	$(\mathcal{S})_{u}$		$(\mathbf{u})_{u}$		
10.	The envelope of straight is	at lines $\frac{x}{a} + \frac{y}{b} = 1$ where	e the parameters are con	nnected by the relation $ab = c$		
	(a) $xy = \frac{4}{c^2}$ Ans. d	(b) $x^2 = 4cy$	(c) $\sqrt{x} + \sqrt{y} = \sqrt{x}$	$(\mathbf{d}) \ xy = \frac{c^2}{4}$		
11.	In which of the following	ng sets, is the curve $y =$	$e^x(\cos x + \sin x), \ x \in (0$	$(0,2\pi)$ concave upwards?		
	(a) $(0, \frac{\pi}{2}) \cup (\frac{5\pi}{4}, 2\pi)$ Ans. b	(b) $(0, \frac{\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi)$	(c) $(0, \frac{\pi}{2}) \cup (\frac{3\pi}{4}, 2\pi)$	(d) $(0, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, 2\pi)$		
12.	The value of the integral $\int_C \frac{dz}{z^2}$, where C is the positively oriented circle $z = 2e^{i\theta}$ $(-\pi < \theta \le \pi)$ about					
	the origin is:					
	(a) 1 Ans. d	(b) 2	(c) -1	(d) 0		
13.		as $f(x,y) = x^2 - y^2$. Wh	nich of the following stat	tements is not true?		
	(a) $f(x,0)$ has a mini	mum at $(0,0)$.				
	(b) $f(0,y)$ has a maximum at $(0,0)$. (c) $f(x,y)$ has a saddle point at $(0,0)$.					
	(d) Hessian of f is po	sitive definite at $(0,0)$.				
	Ans. d					
14.	Consider the statement	ts:				
	(A): Every Riemann in	tegrable function define	ed on $[0,1]$, must have a	primitive on $[0,1]$.		

(B): Every function having a primitive on [0,1], must be Riemann integrable on [0,1].

(a) Both of (A) and (B) are true.

Which of the following statements is true?

(b) (A) is true and (B) is false.

	(c) (B) is true and (A) is false.(d) Both of (A) and (B) are false.
	Ans. d
15.	Which of the following series is conditionally convergent ?
	(a) $\sum_{n=1}^{\infty} (-1)^n$ (b) $\sum_{n=1}^{\infty} \frac{1}{n}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$
	Ans. c
16.	Let $f: \mathbb{R} \to \mathbb{R}$ satisfies $ f(x) - f(y) - x + y \le \sin(x - y ^2)$ for all $x, y \in \mathbb{R}$. Then f is
	 (a) differentiable on R with bounded derivative. (b) Lipschitz, but not necessarily differentiable with bounded derivative. (c) uniformly continuous, but not necessarily Lipscitz. (d) continuous, but not necessarily uniformly continuous.
	Ans. a
17.	The function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ is not a metric on \mathbb{R}^2 , when
	(a) $d((x_1, y_1), (x_2, y_2)) = \max\{ x_1 - x_2 , y_1 - y_2 \}.$ (b) $d((x_1, y_1), (x_2, y_2)) = \min\{ x_1 - x_2 , y_1 - y_2 \}.$ (c) $d((x_1, y_1), (x_2, y_2)) = (x_1 - x_2 ^2 + y_1 - y_2 ^2)^{1/2}.$ (d) $d((x_1, y_1), (x_2, y_2)) = x_1 - x_2 + y_1 - y_2 .$
	Ans. b
18.	Suppose G is an infinite cyclic group, then G has
	 (a) only one generator (b) exactly two generators (c) more than two but finitely many generators (d) infinitely many generators.
	Ans. b
19.	Let S_3 be the symmetric group of all permutations on a set having 3 elements, then the center of S_3 has
	(a) 1 element (b) 2 elements (c) 3 elements (d) 6 elements
	Ans. a
20.	In the ring of all integers, which of the following options is correct
	(a) there is no maximal ideal(b) there is only one maximal ideal(c) there are exactly two maximal ideals

(d) there are infinitely many maximal ideal.

Ans. d